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New Quantum Effect for Vaidya ± Bonner ± de Sitter
Black Holes
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The field equations of spin s 5 0, 1/2, 1, and 2 in the Vaidya±Bonner ±de Sitter
space ±time are investigated. The results show that the radiative mechanism of
massive spin fields depends on the spin state. We have sufficient reasons to
conjecture that the effect originates from the quantum ergosphere.

1. INTRODUCTION

Ever since Hawking (1974) initiated the discussion of particle creation

by a black±hole event horizon, much work, especially with the aid of

the Newman±Penrose (1962) formalism, has been done on black holes

in different types of space±time, such as the Schwarzschild (Page, 1976)

and Vaidya (Kim et al., 1989) space±times. The purpose of this paper is

to extend this method to the Vaidya±Bonner±de Sitter space±time.

This paper is organized as follows. In Section 2 we calculate the

spin coefficients and the tetrad components of the Weyl tensor, and show

that the Vaidya±Bonner±de Sitter metric is of Petrov type D. In Section

3 we use the Newman±Penrose formalism, write a master equation for

fields of arbitrary spin (s 5 0 for the scalar field, s 5 1/2 for the Dirac

field, s 5 1 for the electromagnetic field, s 5 2 for the gravitational

field, etc). In Section 4 we study the character of spin fields near the

black-hole event horizon, and show that the quantum ergosphere (York,

1983) can influence the radiative mechanism of a black hole.
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2. VAIDYA± BONNER ± de SITTER METRIC

The line element of the space±time is (Patino and Rago, 1987)

ds2 5 F 1 2
2M(v)

r
1

Q2(v)

r 2 2
1

3
L r2 G dv2

2 2 dv dr 2 r 2 (d u 2 1 sin2 u d w 2) (1)

where L is the cosmological constant, and both mass M and charge Q depend

on the advanced Eddington ±Finkelstein time v.
The null tetrad is established as follows:

l m 5 2 d 0
m

n m 5 2
1

2 1 1 2
2M
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1

Q2

r2 2
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3
L r2 2 d 0

m 1 d 1
m

m m 5 2
r

! 2
( d 2

m 1 i sin u d 3
m )

m m 5 2
r

! 2
( d 2

m 2 i sin u d 3
m ) (2)

which satisfies l m n m 5 2 m m m m 5 1, with all other inner products zero.
Using the Newman±Penrose (1962) formula, we can get from (1) and

(2) the spin coefficients

k 5 p 5 e 5 l 5 s 5 n 5 t 5 0

r 5 2
1

r
, a 5 2

cot u

2 ! 2r
5 2 b

m 5 2
1

2r
1

M

r2 2
Q2

2r3 1
L r

6

g 5
M

2r2 2
Q2

2r3 2
L r

6
(3)

and the tetrad components of the Weyl tensor

C 0 5 C 1 5 C 3 5 C 4 5 0

C 2 5 2
M

r3 1
Q2

r4 (4)

Equations (3) and (4) tell us that the Vaidya±Bonner±de Sitter metric is of

Petrov type D.
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3. THE GENERALIZED TEUKOLSKY MASTER EQUATION

Since the Vaidya±Bonner±de Sitter metric is a type D vacuum, the
perturbation method of Teukolsky is applicable. Using the result of Teukolsky

(1974), we obtain the linearized equations for the source-free case as

[(D 2 3 e 1 e 2 4 r 2 r )( D 2 4 g 1 m )

2 ( d 1 p 2 a 2 3 b 2 4 t )( d 1 p 2 4 a ) 2 3 C 2] C B
0 5 0

[( D 1 3 g 2 g 1 4 m 1 m )(D 1 4 e 2 r )

2 ( d 2 t 1 b 1 3 a 1 4 p )( d 2 t 1 4 b ) 2 3 C 2] C B
4 5 0 (5)

[(D 2 e 1 e 2 2 r 2 r )( D 1 m 2 2 g )

2 ( d 2 b 2 a 2 2 t 1 p ) ( d 1 p 2 2 a )] F 0 5 0

[( D 1 g 2 g 1 2 m 1 m )(D 2 r 1 2 e )

2 ( d 1 a 1 b 1 2 p 2 t )( d 2 t 1 2 b )] F 2 5 0 (6)

where D, D , and d are the directional derivatives, given by

D 5 l m - m , D 5 n m - m , d 5 m m - m (7)

Each pair of Eqs. (5) and (6) represents a graviton (spin s 5 2) and electromag-

netic (s 5 1) perturbations. In each pair the first equation is for spin states

p 5 s, while the other one is for p 5 2 s.
For the Dirac field, the spinor base form of the field equation is given

by (Page, 1976)

( ¹ abÇ 1 ieAabÇ )P
a 1 i

m 0

! 2
QbÇ 5 0

( ¹ abÇ 2 ieAabÇ )Q
a 1 i

m 0

! 2
PbÇ 5 0 (8)

where m 0 and e are the mass and charge of the particle, and Pa, Qa, and ¹ abÇ are,

respectively, the 2-component spinors and the covariant spinor differentiation

expressed with spinor base components. In terms of the spin coefficients,
Eq. (8) can be written as four coupled equations

(D 1 e 2 r 1 ieA m l m )F1 1 ( d 1 p 2 a 1 ieA m m m )F2 2 i
m 0

! 2
G1 5 0

( D 1 m 2 g 1 ieA m n m )F2 1 ( d 1 b 2 t 1 ieA m m m )F1 2 i
m 0

! 2
G2 5 0(9)
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(D 1 e 2 r 1 ieA m l m )G2 2 ( d 1 p 2 a 1 ieA m m m )G1 2 i
m 0

! 2
F2 5 0

( D 1 m 2 g 1 ieA m n m )G1 2 ( d 1 b 2 t 1 ieA m m m )G2 2 i
m 0

! 2
F1 5 0

where

F1 5 P0, F2 5 P1, G1 5 Q1Ç , G2 5 2 Q0Ç (10)

A m is the electromagnetic potential. In the spherically symmetric space±time,
it is given by

A m 5 (Q/r, 0, 0, 0) (11)

The Klein±Gordon equation is

1

! 2 g
( - m 1 ieA m )[ ! 2 gg m n ( - n 1 ieA n ) F ] 1 m 2

0 F 5 0 (12)

Using Eqs. (1)±(4), (7), and (11) and making the transformations

C B
0 , C B

4 , F 0, F 2, F 5 r 2 (s 1 p 1 1)
pRl(v, r) ? pY

m
l ( u , w ) (13)

and

[F1, F2, G1, G2]

5 [r 2 1 ? 2 1/2Rl(v, r) ? 2 1/2Y
m
l ( u , w ), r 2 2 ? 1 1/2Rl(v, r) ? 1 1/2Y

m
l ( u , w ),

r 2 2 ? 1 1/2Rl(v, r) ? 2 1/2Y
m
l ( u , w ), r 2 1 ? 2 1/2Rl(v, r) ? 1 1/2Y

m
l ( u , w )] (14)

we find that Eqs. (5), (6), (9), and (12) are separable into the forms

F 1

sin u
-
- u

sin u
-
- u

2
1

sin2 u 1 p2cos2 u 2 i2p cos u
-

- w
2

- 2

- w 2 2 2 s 1 l 2 G pY
m
l ( u , w ) 5 0(15)

H A
- 2

- r2 1 2
- 2

- v - r
1 2(s 1 p)

i2p m 0

l 2 i2p m 0r

-
- v

1 F ( p 1 1)A8 1 1 i2p m 0

l 2 i2p m 0r
2

2p

r 2 A 1 i
2eQ

r G -
- r

1 (s 1 p)
i2p m 0

l 2 i2p m 0r 1 pA8 2
A

r 2 1
1

6
(2p 1 1)( p 1 1)r 1 A

r 2 9
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1
1

3
(2s 2 1)(s 2 1)

1 1 (s 2 2) L r2

r2 1 (s 1 p)

3
i2p m 0

l 2 i2p m 0r

i2eQ

r
2 1 m 2

0 1
l 2

r2 2 J pRl 5 0 (16)

where

A 5 1 2
2M(v)

r
1

Q2(v)

r2 2
1

3
L r2 (17)

The prime denotes the derivative with respect to r. Equation (15) shows that

pY
m
l ( u , w ) is the spin-weighted spherical harmonic, and the separation constant

l satisfies

l 5 ! (l 1 s)(l 2 s 1 1) (18)

Here l and m are integers satisfying the inequalities l $ s and 2 l # m # l.
Teukolsky (1973), using the Newman±Penrose formalism, succeeded in

disentangling the perturbations of the Kerr metric, and wrote a master equation

for the massless spin fields. Here we have derived the generalized master

equation (16) governing not only the massless spin fields, but the massive

scalar and Dirac fields as well. For the neutrino, we can set m 0 5 0 and s 5
1/2 in Eqs. (15) and (16).

4. A NEW QUANTUM EFFECT

In order to determine the tortoise-coordinate transformation in a nonstatic

space±time, it is convenient to change variables to the set (Li and Zhao, 1995)

rÄ 5 r 2 rH , vÄ 5 v (19)

In these coordinates the metric (1) becomes

ds2 5 F 1 2
2M(v)

r
1

Q2(v)

r2 2
1

3
L r2 2 2rÇ H G dvÄ 2

2 2 dvÄ drÄ 2 r 2(d u 2 1 sin2 u d w 2) (20)

where rH is the location of the event horizon satisfying the null-surface

condition, namely

1 2
2M(v)

rH

1
Q2(v)

r2
H

2
1

3
L r2

H 2 2rÇ H 5 0 (21)
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and the dot denotes the derivative with respect to v. From the radial null

condition, we have

dvÄ 5
2(1 2 2 h )

1 2 2M/r 1 Q2/r2 2
1

3
L r2 2 2rÇ H

drÄ 1 2 h dvÄ

5
2(1 2 2 h )

A 2 2rÇ H
drÄ 1 2 h dvÄ (22)

Now, we define the differential form of the tortoise coordinate in the
Vaidya±Bonner±de Sitter space±time as [using Eq. (22)]

dr* 5
1 2 2 h
A 2 2rÇ H

drÄ 1 h dvÄ , v* 5 vÄ (23)

where h is an integrating factor, which satisfies

h ’ rÇ H (near the event horizon) (24)

Equation (23) can be integrated near the event horizon to be

r* , 1

2 k
ln (r 2 rH) (25)

where

k 5
1

1 2 2rÇ H 1 M

r2
H

2
Q2

r3
H

2
1

3
L rH 2 (26)

In order to solve the generalized Teukolsky-type master equation (16)
near the event horizon, we have recourse to the coordinates (r*, v*), whereupon

Eq. (16) becomes

- 2
pRl

- r 2
*

1 2
- 2

pRl

- v* - r*

1 ( V 0 1 i2 v 0)
- pRl

- r*

5 0 (27)

where

V 0 5
8(s 1 p 2 1)p2 m 2

0rH rÇ H

l 2 1 4p2 m 2
0 r2

H

2
2p

rH 1 1 2
3M

rH

1
2Q

r2
H 2 (28)

v 0 5
eQ

rH

1
2(1 2 s 2 p)p m 0 l rÇ H

l 2 1 4p2 m 2
0 r2

H

(29)
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The linearly independent solutions of (27) are

pR
in
l 5 exp( 2 i v v*) (30)

pR
out
l 5 exp( 2 i v v*) exp[2i( v 2 v 0)r*] exp( 2 V 0r*) (31)

Here pR
in
l is the ingoing wave and pR

out
l is the outgoing wave. According to

Damour and Ruffini (1976) and Sannan (1988), the mass loss rate and the

Hawking temperature of a Vaidya±Bonner±de Sitter black hole are given by

dM

dv
5 2

1

2 p o
lmp #

`

0

v G v lmp

exp[( v 2 v 0)/T ] 6 1
d v (32)

T 5
k

2 p
5

1

2 p (1 2 2rÇ H) 1 M

r2
H

2
Q2

r3
H

2
1

3
L rH 2 (33)

where G v lmp is the transmission coefficient in that mode, with which a particle

can escape from the event horizon to infinity.

From Eq. (32), it is clear that the presence of v 0 influences the radiative
mechanism of the black hole. Equation (29) shows that v 0 is the sum of two

terms. The first term comes from the static electromagnetic field. We conjec-

ture that the second term is due to the quantum ergosphere (York, 1983).

There are two reasons to support this: (1) The second term is proportional

to the physical quantity rÇ H describing the quantum ergosphere and (2) the

second term depends on the spin state, which implies that the quantum
ergosphere differs from the classical ergosphere of a rotating (Kerr) black

hole. The results show that the nonstatic black hole should have some new

quantum effects which are unknown as yet.
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